
As the order number of the element increases the range ro and together with it the ratio ro/r L 
decreases (for did- amd paramagnets r L is virtually independent of the material) and therefore 
the effect of the characteristic magnetic field on the character of the energy release becomes 
weaker. The broken curve 5 was constructed in [6] for the same values of I, Eo, and R as those 
used for curve 3. The differences in the results are attributable to the fact that for the 
step size s chosen in [6] (AE = 0.0bE) the condition that the effective angle of deflection in 
the magnetic field be limited (b < i rad) is not satisfied (b = 2.5 tad). 

The calculations showed that as the electron energy Eo increases the character of the self- 
consistent distribution of the energy release in range units remains virtually unchanged. This 
is attributable to the fact that in the energy range studied (1-5 MeV) the ratio ro/r L is 
practically constant. 
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GRADIENT OF THE DISCREPANCY IN THE ITERATIVE SOLUTION OF INVERSE HEAT- 

CONDUCTION PROBLEMS. III. CALCULATION OF THE GRADIENT USING A CONJUGATE 

BOUNDARY PROBLEM 

O. M. Allfanov and S. V. Rumyantsev UDC 536.24 

The determination of the gradient in the discrepancy functional, which is required 
for the construction of regularizing gradient algorithms for their solution, is 
considered for various formulations of nonlinear inverse problems of generalized 
heat conduction. 

In [i], the conditions of the conjugate boundary problems were derived for the formula- 
tion of the second and third boundary problems in the case of a quasilinear generalized heat- 
conduction equation, and formulas were obtained for determining the discrepancy gradient in 
terms of the conjugate variable. It was assumed that the time dependence of the temperature 
at one mobile internal point of a one-dimensional spatial region is known as the initial data. 

Below, the conjugate problem is brought to a form in which there is no singular term, 
the conjugate problem is formulated for the case of measurements at the boundary of the re- 
gion, and expressions are obtained for the discrepancy gradient in measurements at several 
spatial points and also for other types of boundary conditions of the problem. 

As in [I], the gradient of the discrepancy functional J = 2"1 S IT (d(z), ~)-- [(z)]zd~ 
O 

with respect to the functions ~ (x), p, (~), P2 (T), and the numercial vectors ~= {~j)~1, 

= {C~}~', K = {Kj}~ =, g = {gj}~4 is considered, for the following conditions 

CT~ = (ETx)x -I- KTx -t- g, 

(x, ~)6Q~={X~(~)<x<X~(~), 0 < ~ < ~ } ;  

S. Ordzhonikidze Moscow Aviation Institute. Translated from Inzhenerno-Fizicheskii Zhur- 
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where 

T(x ,  0 ) = ~ ( x ) ;  [o@T~-}-OJlx=xi(~ ) = p i ( ' r ) ,  i =  1, 2, 

M~ M2 
(r) = ~ ~ j  (T), c (r) = ~ c~j (r), 

/'=1 1=1 
Ms M,, 

K (T) = ~ K~p~ (T), e (r) = ~ a ~  (T); 
1=~ /= l  

q0i(T) are specified basis functions; ~(x)EL~[XI(O), X2(0)l; pi(T), /(x) EL2[0, %1; XI(x), X~(~), d(T), 
zE[0, Tm] are piecewise-smooth functions corresponding to the conditions: Xx(~)~ d(T) when 
ax # 0, X1(z) < d(~) when al = 0, d(T) ~ Xz(x) when aa # 0, and d(z) < Xa(T) when aa = 0. 

Note that, if the desired quantities are the functions ~(x), pi(r), i = I, 2, the coef- 
ficients C, ~, K, and the free term g may be specified to depend not only on T but also on 
the arguments x, T; their form may differ from that given above when these quantities are 
regarded as unknowns. 

In [i], for the case where ex # 0, ea # O, a formulation of the boundary problem conju- 
gate to the problem for an increment in T(x, T) is obtained, in the form 

L**(x ,  "~)= h(~:) f (x- -d("c)) ,  (x, ~)EQ.; (1) 

, ( x ,  *ra) = O; (2) 

* . _ [ lYi ] Bi~*l .=xgz)-~ ( a x * ) x - - * ( X l  -4-a~-- , al) : 0 ,  i =  1, 2, (3) 
Ti Jx=Xi(t) 

where 

121 --  

L* -- 0 Ax*, A~** = (a~,).~, - -  (a2*)= + a3*, 
O~ 

k 1 1 
- -  - - ,  a .  ~ (2;L~ -6 K), a~ = --C- ( ) ~  -6 g r  + K~ - -  C.) ,  

C - C " 

h (~) = 7" (d (~), ~) - -  f (T). 

Reducing the Conjugate Problems to a Form Convenient for Numerical Solution 

In performing calculations, the problem in Eqs. (1)-(3) must be reduced to a form in 
which there is no singular term. Assuming that Xt(T) < d(T) < Xa(T), the function 

lie (%, T) = {'1 (37, T), % E (Xl ('~), d ("f)), 
, ,  (x, "0, x ~ (d(T), X~ ('0) 

is introduced, and it may be shown that the system in Eqs. 
lowing problem 

--,,~--Ax~,1 = o, (x, ~)EQI~ = { X ~ ( T ) < x < d ( T ) ,  O< '~<-c ,~} ;  

- -*2T - -  A.~,~. = 0, (x, r) C O~  = {d (T) < X < X2 (T), 0 <2 T < ~ } ;  

*air = B2a:'ttr[x=XdT ) B,~ [~=x,(~) = 0; 

'1  (d(T), T) - -  *2 (d (T), T) ---- O; 

(1)-(3) is equivalent to the fol- 

(4) 

(5) 

(6) 

'~ (x, "~) = O. (7) 

The solution of Eqs' (1)-(3) is the generalized function ~(x, T), (x,~)6Q~, satisfying 
Eqs. (1)-(3) in the generalized sense, that is 

709 



where  F i s  t h e  s e t  o f  g e n e r a l i z e d  f u n c t i o n s  s a t i s f y i n g  t h e  i n i t i a l  and b o u n d a r y  c o n d i t i o n s  in  
Eqs.  (2) and ( 3 ) ;  ~ = ~ (x ,  r )  i s  t he  b a s i c  f u n c t i o n ,  which  i s  u n d e r s t o o d  be low to  be  a r e a l  
f u n c t i o n ,  c o n t i n u o u s  t o g e t h e r  w i t h  i t s  d e r i v a t i v e s  % ,  x '  and ~ x x ,  and f i n i t e  i n  t he  r e g i o n  
Q~; ($ ,  p) i s  t he  v a l u e  o f  t h e  g e n e r a l i z e d  f u n c t i o n  p m u l t i p l i e d  by t h e  b a s i c  f u n c t i o n  ft .  

The condition ensuring differentiability of the operator of the direct problem [I] guar- 
antees continuity of the coefficients of the operator L* and their corresponding derivatives 
in the region Qx. Therefore, differentiating (aaT)x as a generalized function [2], the result 
obtained, in view of Eq. (7), is 

( a ~ M  -- { ( a ~ M }  - -  h (~) ~ (x - -  d (~)), 

where 

{atFxx} ](a,O/~):~..~, x~(X~(x), d(x)), 
--/(a,~).~.~, x ~ (d ('r), X~ ('t:)) 

is the regular component of the generalized derivative (ax~)xx. The other derivatives T T and 
(a2T) x do not have singular components in view of the condition in Eq. (6) and the continuity 
of a2. Therefore, taking account of Eqs. (4) and (5), it is found that T(x, T) satisfies Eq. 
(i) in the generalized sense, i.e., the problem in Eqs. (1)-(3) is equivalent to Eqs. (4)-(7), 
which is what was to be proven. 

Finally, considering the formulation of the inverse problem when the point x = d(~) at 
which f(T) is specified coincides with one of the:boundaries of the region, it is assumed, 
for example that d(T) = Xa(~). Proceeding analogously, it may be shown that in this case the 
conjugate problem takes the form 

~ +  * A ~ = 0 ;  (x, T ) ~ G ;  ~(x, x ~ ) = 0 ;  

Bl%~Ix=xd~) 0; * = B~l~=x,l~) = h (~). 

Case of Several Measurements 

Consider the inverse problem for the equations 

CT~ = (%T~)~ + KTz + g, 

(x, ~ ) C G =  { G ( ~ ) < X < d N + , ( ~ ) ,  0 < ~ < ~ }  
(8 )  

with the boundary conditions 

assuming that 

T (x, 0) = ~ (x); (9) 

[~lXT~ + ~,TI~=e.(~ ) = p~ (x); (10) 

[~z~.T~ + ~2Tl'x=@+ l (~) = p~ (x), (11) 

T(d,~(x), "r)= f,,(x), n = 1, N, N ~ I ,  (12) 

a r e  known d e p e n d e n c e s ,  where  d~ < da < . . .  < d N. 

The d e s i r e d  q u a n t i t y  may be  one  o r  more f u n c t i o n s  f rom t h e  s e t  g={~(x ) ,  P1(~), P2(x), X(T), 
C ( T ) , K ( T ) , g ( T ) } .  I n  d e t e r m i n i n g  ~ (x )  and (o r )  p i ( ~ ) ,  i = 1,  2,  i t  i s  assumed t h a t  X -- X(T, x ,  
T), C = C(T, x, x), K = K(T, x, T), g = g(T, x, ~). 

The conditions of the problem for an increment in the field of T(x, T) are identical to 
the conditions in Eqs. (9)-(11) of [i], with the replacement of XI(~) and X2(T) by do(r) and 
dN+~ (x), respectively. 

Writing the functional 

1 N "crn 
s(~) = -  i- ~=,~ a[ tr(u, e,~(.), ~)--~.(~)]~e., (13) 
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it is assumed that dn(Z), n = 0, N +' 1 are piecewise-smooth functions. First consider the 
case when ax # 0, ~a @ 0 and do(~) < d~(~), dN(Z) < dN+t(z). 

Following the method of obtaining a conjugate boundary problem outlined in [i], and per- 
forming the above reduction to a form without a singular term, the following formulation of 
this problem is obtained 

% , , ~ + A * * , , = 0 ,  (x, "0~Q,, n = ' ] ,  N+I= ,  

%,(z, T~,,)-=0, n - -  1, N +  1; 

*,, (d,, ('0, ~ ) - - % + ~ ( d ~ ( ' ~ ) ,  " 0 = 0 ,  n = 1, N; 

( a l *3x  - -  ~ ds + a.~ - a1 = o; 
% x=~o(~) (14) 

[ ( - ) ]  �9 ( a l * ~ + ~ ) x  - -  *Jv+~ d~+~ + a~. - -  a l  = O, ( 1 5 )  
"~2 X=dN+ 1 ('0 

where  Y1 = =i;~ (do (T), r); T2 ---- a.z~ (dN+ 1 (T), ~); ~1 = ~zl%x (do ('~), "~) -F ~1; (r.z = ~2%x (tiN+ 1 (T,), "r,) --~ ~,,. 

The formulas for the components of the gradient of the functional in Eq. 
case take the form 

S ~ ( x ) = , ~ ( x ,  0), d N _ ~ ( 0 ) < x % 4 ( 0 ) ,  n =  l, N + I ;  

J; ,  (~) = -.i (do (~), ~) a ,  (do ( , ) ,  ~) . 
71 ('0 ' 

J ; ,  ('0 = %v+1 (dx+~ ('0, -r) a~ (dN+ ~ ('0, "0 . 
"h ('~) 

(13) in this 

(16) 

(17) 

(18) 

Js = q:)o + 031 "t- ON+l, l = 1, J ~ l ;  

N+ 1 "bn dn?:) j ; = _ X j e ,  j 
,,=1 o e ._ l  c~) C (x ,  "c) 

T~: (x, "r) (Pz (T (x, "c)) dx, t = 1, Ms; 

(19) 

(20) 

�9 N + I  "gin dn('c) 

rt=l 0 dn__ ('r,) C ( X ,  "rS) 
Tx(x ,  x) ~z (T(x ,  G) dx, l --- 1, M3; 

(21) 

where  

N + I zm dn(T) 

I 
.. C(x ,  .r) n = l  0 d n _  1 ('r) 

% (T(x ,  "r))dx, l = 1, M~, 

N + I  Tm dn('O 

n = I dn-- 1 (x) 

, , , ( x ,  ~) 
C(x, ~) [ Txx (x, 1:) q)l (T (x, "~)) -[- T~ (x, "v) dcpz (T (x, "c)) ] dx, 

dT J 

~m 

r = j' 
0 C (x, "0 Tx(x ,  " r )~ l (T(x  , .~))lx=ai(.0 d-r, i =  1, N-+- 1. 

(22) 

711 



If the functions at the boundaries of the region {o(x)=T(do(x) ,  x), [zc+,(T)=T(dzc+~(x), "r), 
are added to the given N dependence fn(~), Eqs. (14) and (15) may be specified with right-hand 
sides equal to F(ti, d0(T), ~)--[0(~)and F(~, dN+~ (~), ~)--[~v+a(T) , respectively. 

Inverse Problem with Boundary Conditions of the First Kind and in a Mixed Formulation 

Repeating the entire scheme for obtaining the gradient of the functional in Eq. (13), it 
may be shown that the following results apply to the formulation of the inverse problem cor- 
responding to the conditions in Eqs. (8)-(12) with ~=~2=0, ~=~2 =l;d0(x)<d~(x), d~(x)<d~+t(x). 
The problem for the field increment is 

V z == alPxx -{- argo x --~ a3o -q- q + ~, 

v (do (x), "~) = Ap~ ('~); 

1 
where q = ~ [ A X T ~ +  (A~)~Tx+ AKTx + Ag--ACT~] 

The conjugate problem is 

~ ) , , ~ + A * ~ . = 0 ,  ( x , ' 0 ~ Q ~ ,  n = l ,  N + I ;  

~p,(x, % , ) : - : 0 ,  n =  1, N + I ;  

(x, "0 ~ Q~; v (x, 0) = a~; 

O (tiN+ 1 (T), T) = Ape. ('~), 

is the remainder term. 

~n (d,~('~), T ) - - ~ n +  1 (dn('~), "1:)= 0, n = 1, N; 

[(a~,,):~-- (a~,,,+~)~lx=d,,~.~ = T(u,  d . ( '0 ,  " 0 -  L.('0, n ------ 1, .u 

1~1 (do ('1:), T) = I~N + 1 (dN+l(T), '~) -= 0. 

The formula for the components of the gradient J~ (x), Jcz, JKt, Je, are identical to the cor- 
responding Eqs. (16), (20), (21), and (22). The components Jpi(T), Jp,(~), J~l take the form 

,/p, (T) -~ tat (do ('c), x) ' 1  (do ('~), glx, ( 2 3 )  

J;2 ("c) = - -  [al(dN+ 1 ('~), T)I~N..[_ 1 (dN+ 1 (T), T)]x,J'~t = ~o, l = 1, M1. (24 )  

Finally, consider :the mixed boundary formulation of the inverse problem when. a~ ffi 0, 
Bx = i; aa # 0 and the measurements are specified at the points dn(~) , n = i, N + I, while 
do(x) < d~(~). In this case, the problem for the field increment is determined by the condi- 
tions 

v~ = alvx~ or- a~v~ + a~v + q + r (x, "~) E Q.~; v (x, 0) = A~; 

v (do ('r), x) = Apl ('~); [?2vx + a~Vlx=au + 1 c,) = Ap~ (x) --]- ~s. 

The conjugate problem takes the form 

~,~ + A%~,~ = 0, (x, z) E Q~, n = 1, N + 1; 

~,~(x, x m ) = 0 ,  n =  1, Nq- -1 ;  

r  x ) - -  ~pn+l (d, (x ), "0 = 0, n =  1 , 'N;  

[(a~r - -  (a~r = T (u, d,~ (x), x) - -  f~. (% n = 1, N; 

~ (do (~), z) = O; 

-- ' -- a I = T (3, dN+ 1 (v), ~) -- f~+ 1 (~)- 

The components of the gradient are determined here by Eqs. (16), (23), (18), and (20)- 
(22) and the formula 

J~q = @o "or- 0P~v+1, I = 1, M1. 

Note, in conclusion, that the effective computational algorithms for solving conjugate 
boundary problems may be obtained on the basis of transforming the initial region with mobile 
boundaries to a rectangular region with simultaneous straightening of the lines at which the 
input data fn(~) are specified. This transformation is made by means of the variable sub- 
st itut ion 
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l .  
2. 

x- -d ._~  (~) 
Y " =  d.(~)--d~_~(T) ' n - - l ,  N; t=-~. 
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RESOLVING POWER OF THE ITERATION METHOD OF SOLVING INVERSE HEAT-CONDUCTION 

BOUNDARY-VALUE PROBLEMS 

S. L. Balakovskii UDC 536.24 

A quantitative estimate is obtained for the range of frequencies entering in the 
boundary condition that is restorable by using a solution of the inverse problem 
by an iteration method. 

Methods of solving inverse heat-conduction problems (IHCP) should possess smoothing 
properties that would not cause fluctuations of the solution. Such smoothing is assured, 
for instance, because of the natural step regularization [I], the introduction of extremal 
formulations of the IHCP and so-called stabilizing functionals [i, 2]. Regularized algo- 
rithms are used to seek the solution in a set of functions possessing a definite degree of 
smoothness, and suppress high frequencies in the parameters being recovered. However, if 
the fluctions in the desired characteristics are physical in nature, then the viscosity 
properties of the regularized algorithms do not permit detection of the fine structural 
features of the solution. 

Therefore, when solving the IHCP a situation must be met when the "noninertial" unregu- 
larized algorithms pass high frequencies, but because of incorrectness there is no possi- 
bility of clarifying the physical component among them and regularization does not afford such 
a possibility because it filters high harmonics independently of their origin. There, there-, 
fore, arises the problem of determining the range of frequencies in the restorable parameters 
as a preliminary step in the selection of methods of raising the accuracy of solving the IHCP~ 
especially in the case of complex behavior of the desired functions. Increasing the measure- 
ment accuracy, taking account of a priori information [I], rational placement of the tempera- 
ture sensors in the object under investigation with application of the Fisher information 
matrix [3] can be such methods. 

Two reasons for suppression of the high frequencies are represented essential for the 
solution of inverse problems: the smoothing action of the heat-conduction operator and the 
discretization of the continuously formulated problem. 

To obtain quantitative estimates of the passband, we consider the model of a semiinfi- 
nite body with thermal diffusivity coefficient a. As is noted in [i], the smoothing action 
of the heat conduction operator can be estimated by giving the change in body surface tem- 
perature according to a sinusoidal law T W = Tosin(m~). Then after a certain time the tem- 
perature at a depth h will also be described by a sinusoid [4] 

T(tt, z) = Thsin (my-- ~), (1) 

where  q i s  a c e r t a i n  phase  d i f f e r e n c e .  

The amplitude of the oscillations T h is defined as follows 

(2) 
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